場所打ち杭用杭頭半固定工法の開発

その10 杭体モデルの影響

場所打ち杭	杭頭半固定	杭体モデル
弾性	弹塑性	構造設計

1. はじめに

著者らは引張軸力が伝達可能な場所打ち杭用の杭頭半 固定工法の開発を行ってきた¹⁾。本報では、杭体を弾性モ デルおよび弾塑性モデルとした場合の各杭の負担せん断 力および曲げモーメントを算定し、これらを用いて比較 検討を行った結果ついて述べる。

2. 建物概要および検討概要

表1に建物概要を示し、図1および図2にそれぞれ杭 伏図および軸組図を示す。また、図3に地盤概要を示す。

検討の対象とした建物は、地上 14 階建ての鉄筋コンク リート造の共同住宅である。杭頭半固定工法の採用は、 図3に示すように深度 20m 辺りまで地盤変形係数が比較 的小さく曲げ卓越型の地盤であったこと、さらに地震時 の杭体の損傷軽減を目的としたことによる。

杭体の主筋量は、軸力変動の大きい Y 方向の地震力で 決まっており、さらに比較を簡便にするため検討構面と して X2 通りの一構面を取り出した。

断面設計を行った結果、杭径は弾性モデルでは φ 2000、 弾塑性モデルでは φ 1800 となった。この設計条件として は、杭頭接合部の径はそれぞれ杭径の 0.7 倍とし、引張軸 力抵抗用の引張定着筋は、弾性モデルでは D41 を 24 本、 弾塑性モデルでは D41 を 20 本配置した。以下では、この 杭径でそれぞれ検討を行った結果を示す。

3. 設計応力

表2に検討構面(杭2本)の設計せん断力を示し、表3 に設計軸力を示す。両モデルの杭径の違いにより、厳密 にはパイルキャップの重量が異なるが、本検討では、設 計せん断力および軸力ともに同一の値を採用した。

4. 杭体応力の算定方法

図4に水平地盤反力係数 k_h と杭水平変位量 y の関係を 示す。また、図5に解析に用いた文献 1)に基づく杭頭部 の曲げモーメントと回転角関係モデル、図6に杭体の曲 げモーメントと曲率の関係モデルを示す。ここで、図4 中の k_{h0} は基準水平地盤反力係数(変位 1cm 時)を示す。

杭体の応力は、弾性床上の梁部材の剛性マトリクス法 を用いて算定した。地盤変形係数は、図3に示す値を 1m ピッチごとに与え、図4の関係により地盤の非線形性を 考慮した。なお、杭の応力解析において、地盤反力係数 の群杭効果は無視し、せん断力は各杭の杭頭変位が等し

Development of semi-rigid Connections for Cast-in-place Pile Head Part 10 Influence of Pile Model on Structural Design

正会員	〇村田	義行* ¹	同	新井	寿昭* ²
同	宮田	章* ³	同	伊勢ス	本昇昭* ⁴
同	青山	隆行* ⁵			

表2 設計せん断力

表3 設計軸力

(LNI)

							(KIN)
一次	二次	部位	長期	地震時	保有時	一次	二次
2694 kN	5388 kN	Y0-X2	7333	-6802	-16541	531	-9208
		Y1-X2	8428	6831	16541	15259	24969

くなるように分配した。図5に示すように、杭頭部の曲 げモーメントと回転角の関係は、杭径、引張定着筋量お よび軸力の違いにより、杭ごとにそれぞれ異なるモデル となっている。また、弾塑性の杭体モデルは、予め主筋 本数を決めた後にモーメントと曲率の関係を断面解析に より算定し、図6に示すようなトリリニア型に置換した。

5. 計算結果および考察

図7に一次設計時および二次設計時の曲げモーメント 分布を示し、表4に発生応力および杭頭変位の算定結果、

> MURATA Yoshiyuki, ARAI Toshiaki, MIYATA Akira, ISEMOTO Noriaki and AOYAMA Takayuki

表5に発生応力に基づいて設計した配筋状況を示す。計 算の結果、杭体の主筋量はいずれも二次設計時の引張軸 力側の地中部で多く必要となった。

最初に、曲げモーメント分布についてみると、杭径が 異なるため直接的な比較は適切ではないが、杭体モデル の違いによる曲げモーメントの差は、圧縮側では一次お よび二次設計時ともに比較的小さいといえる。しかし、 杭体モデルの違いによる差は、二次設計時の引張側で顕 著となっており、特に弾性モデルの地中部曲げモーメン トは、弾塑性モデルの2倍以上の値となっている。この 結果、弾性モデルでは主筋間隔が十分に確保できず杭径 を \$ 2000 とし、さらに数ヶ所を束ね筋とした。

一方、二次設計時の負担せん断力についてみると、弾 塑性モデルのせん断力は、引張側で弾性モデルの 0.80 倍、 圧縮側で 1.15 倍である。このように圧縮側と引張側で著 しく剛性が異なる場合には、剛性の大きい圧縮側の負担 せん断力が増大するので、設計上留意する必要がある。

ここで、Chang 式により杭の特性値 β を算定すると、弾 塑性モデルの引張側の剛性 EI が弾性モデルの約 1/8 であ ることから、(1/EI)^{1/4} より弾塑性モデルの β は弾性モデル の 1.7 倍となる。さらに前述したように弾塑性モデルでは 引張側の負担せん断力が減少するので、0.8 倍のせん断力 負担になったとすると、地中部最大モーメントは弾性モ デルの 1/2.1 となり、今回の検討結果と概ね一致する。

6. まとめ

- 抗体の剛性を適切に評価することにより、曲げに対して抗体の合理的な設計が可能となる。
- 2) 引張側の杭体の剛性が低下すると、圧縮側のせん断力 負担が大きくなるので、せん断補強を十分に行ってお く必要がある。

なお、本検討はキャプテンパイル協会の活動の一環と して行ったものである。

参考文献:1)吉松ほか:場所打ち杭用杭頭半固定工法の開発 その 1~ その9,日本建築学会大会学術講演梗概集,B-1,-pp.349~365,2006.9

*1 高周波熱錬

- *2 西松建設
- *3 鹿島建設
- *1 Neturen *2 Nishimatsu Construction
- *3 Kajima Corporation

図7 曲げモーメント分布

表4 発生応力および杭頭変位の算定結果

14/1		一次設計			二次設計			δ(mm)		
10.1本	部位	軸力	Q	M(k	N∙m)	Q	M(k	N∙m)	一次	二次
2110			(kN)	杭頭	地中部	(kN)	杭頭	地中部	設計	設計
314 44	Y0-X2	引張	1263	3549	3033	2361	4964	8125		00.0
5年11年	Y1-X2	圧縮	1431	5515	2946	3027	13768	8156	29.8	93.9
고兴 학교 하는	Y0-X2	引張	1165	3258	1647	1897	2917	3566	00 F	101.0
钾空性	Y1-X2	圧縮	1529	5479	3104	3491	12982	9675	39.5	101.8
の.せん版力 M.由げモー かん る.枯頭変位										

表 5 配筋状況

杭体	杭径D	引張定着筋		杤	1主筋	せん断補強筋		
モデル	(mm)	配筋	配置径	上部配筋	中間部配筋	1D間	1D~5D間	
弾性	2000	24-D41	1260	36-D35	(36+12)-D35	U12.6@75	U12.6@100	
弾塑性	1800	20-D41	1120	36-D35	36-D35	U15@100	U15@125	
※杭頭接合部径=杭径D×0.7								

*4 戸田建設

*5 三井住友建設

*4 Toda Corporation

*5 Sumitomo Mitsui Construction